Ditinjau dari asal usul kata, kata “algoritma” sendiri mempunyai sejarah yang cukup aneh. Kata ini tidak muncul di dalam kamus Webster sampai akhir tahun 1957. Orang hanya menemukan kata algorism yang berarti proses menghitung dengan angka Arab. Anda dikatakan algorist jika Anda menggunakan angka Arab. Para ahli bahasa berusaha menemukan asal kata algorism ini, namun hasilnya kurang memuaskan. Akhirnya para ahli sejarah matematika menemukan asal mula kata tersebut. Kata algorism berasal dari nama penulis buku arab yang terkenal, yaitu Abu Ja’afarMuhammad Ibnu Musa al-Khuwarizmi (al-Khuwarizmi dibaca orang barat menjadi algorism).Al-Khuwarizmi menulis buku yang berjudul Kital al jabar wal-muqabala, yang artinya “Buku pemugaran dan pengurangan” (The book of restoration and reduction). Dari judul buku ini kita juga memperoleh akar kata “aljabar” (algebra). Perubahan dari kata algorism menjadi algoritm muncul karena kata algorism sering dikelirukan dengan arithmetic, sehingga akhiran –sm beubah menjadi –thm. Karena perhitungan dengan angka Arab sudah menjadi hal yang biasa/lumrah, maka lambat laun kata algorithm berangsur-angsur dipakai sebagai metode perhitungan (komputasi) secara umum, sehingga kehilangan makna aslinya. Dalam bahasa Indonesia, kata algorithm diserap menjadi “algoritma”.
Pada tahun 1950, kata algoritma perama kali digunakan pada “algoritma Euclidean” (Euclid ’s algorithm). Euclid, seorang matematikawan Yunani (lahir pada tahun 350 M), dalam bukunya yang berjudul Element menuliskan langkah-langkah untuk menemukan pembagi bersama terbesar (common greatest divisor atau gcd), dari dua buah bilangan bulat, m dan n (tapi Euclid tidak menyebut metodenya itu sebagai algoritma, baru abad modernlah ornag-orang menybut metodenya itu sebagai “algoritma Euclidean”), Pembagi terbesar dari dua buah bilangan bulat tak-negatif adalah bilangan bulat positif terbesar yang habis membagi kedua bilangan tersebut.
Semua factor pembagi adalah
1, 2, 4, 5, 8, 10, 16, 20, 40, 80
Dan semua factor pembagi 12 adalah
1, 2, 3, 4, 6, 12
Maka gcd(80,12)=4
Langkah-langkah mencari gcd(80,12) dengan algoritma Euclidean sebagai berikut :
80 dibagi 12 hasilnya = 6, sisa = 8 (atau: 80 = 6.12 +
12 dibagi 8 hasilnya = 1, sisa = 4 (atau: 12 = 1.8 + 4)
8 dibagi 4 hasilnya = 2, sisa = 0 (atau: 8 = 4.2 + 0)
Karena pembagian yang terakhir menghasilkan 0, maka sisa pembagian terakhir sebelum 0, yaitu 4, menjadi gcd(80,12). Jadi, gcd(80,12) = gcd(12,8) = gcd(4,0) = 4.
Contoh-contoh algoritma yang sudah dijelaskan di atas memberi dua pesan penting. Pertama, sebuah algoritma harus benar. Kedua, algoritma harus berhenti, dan setelah berhenti,algoritma membri hasil yang benar. Menurut Donald E. Knuth dalam bukunya yang berjudul The art of Computer Programming, sebuah algoritma harus mempunyai lima ciri penting:
1. Algoritma harus berhenti setelah mengerjakan sejumlah langkah trbatas.
2. Setiap langkah harus didefinisikan dengan tepat dan tidak brarti-dua (ambiguous). Misalnya, pernyataan “bagilah p dengan sejumlah beberapa bilangan bulat positif”,pernyataan ini dapat bermakna ganda. Berapakah yang dimaksud dengan “beberapa”? Algoritma menjadi jelas jika langkah tersebut ditulis “bagilah p dengan 10 buah bilangan bulat positif”.
3. Algoritma memiliki nol atau lebih masukan (input). Maukan ialah besaran yang diberikan kepada algoritma untuk diproses. Algoritma Euclidean mempunyai dua buah masukan, m dan n.
4. Algortima mempunyai nol atau lebih keluaran (output). Keluaran dapat berupa pesan atau besaran yang memiliki hubungan dengan masukan.
5. Algoritma harus sangkil (effective). Setiap langkah harus sederhana shingga dapat dikerjakan dalam sejumlah waktu yang masuk akal.
0 comments:
Post a Comment